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Adiabatic quantum algorithm for search engine ranking
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We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank
vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive
numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state
in a time which, on average, scales polylogarithmically in the number of webpages. We argue that the main
topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The
top rankedlog(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum
speedup. Moreover, the quantum PageRank state can be used in“q-sampling” protocols for testing properties of
distributions, which require exponentially fewer measurements than all classical schemes designed for the same
task. This can be used to decide whether to run a classical update of the PageRank.

Introduction.—Quantum mechanics provides computa-
tional resources that can be used to outperfom classical algo-
rithms [1]. Problems for which a polynomial or exponential
quantum speed-up is achievable have been sought in quantum
computation since its inception, and their ranks are swelling
slowly [2]. Yet, while ranking the results obtained in response
to a user query is one of the most difficult tasks in searching
the web [3], so far no efficient quantum algorithms have been
proposed for this task [4].

Here we present an adiabatic quantum algorithm [5] which
prepares a state containing the same ranking information as
the PageRank vector. The latter is a central tool in data min-
ing and information retrieval, at the heart of the success of
the Google search engine [3, 6–9]. The best available classi-
cal algebraic and Markov Chain Monte Carlo (MCMC) tech-
niques used to evaluate the full PageRank vector require a time
which scales asO(n) andO(n logn), respectively, where
n is the number of pages, i.e., the size of the web-graph.
We investigate the size of the gap of the adiabatic Hamil-
tonian numerically using a wide range of web-graph sizes
(n ∈ {22, . . . , 214}), and present evidence that our quantum
algorithm prepares the PageRank state in a time which scales
on average asO[polylog(n)]. We argue that while extraction
of the full PageRank vector cannot in general be done more
efficiently than when using the aforementioned classical algo-
rithms, there are particular graph-topologies and specifictasks
of relevance in the use of search engines for which the quan-
tum algorithm, combined with other known quantum proto-
cols [10–13], may provide a polynomial, or even exponential
speedup. We discuss the underlying graph structure which we
believe is responsible for this potential speedup, and provide
evidence that it is the power law distribution of the out-degree
nodes that plays the key role. A proof of this fact would be
very interesting.

Model of the web-graph.—The PageRank algorithm, in-
troduced by Brin & Page [6], is probably the most promi-
nent ranking measure using the query-independent hyperlink
structure of the web. The PageRank vector is the principal
eigenvector of the so-called Google matrix, which encodes the

structure of the web-graph via its adjacency matrix. The hu-
mongous size of the World Wide Web (WWW), with its ever
growing number of pages and links, makes the evaluation of
the PageRank vector one of the most demanding computa-
tional tasks ever [9]. In practice PageRank is evaluated over
real data providing the structure of the actual WWW. On the
other hand the use of models of the web-graph has proved to
be useful in testing new ideas concerning structure measures
and dynamical properties of the web [8]. To accurately cap-
ture the WWW graph a good candidate model network should
be (i) sparse (the number of edges is proportional to the num-
ber of nodes), (ii) small-world (the network diameter scales
logarithmically in the size of the network), and (iii) scale-free
(the in- and out-degree probability distributions obey a power
law). To analyze the scaling properties of our algorithm we
used two well known models of the web-graph: the prefer-
ential attachment model [59], and the copying model [60].
These models are based on two different network evolution
mechanisms, both of which yield sparse random graphs with
small-world and scale-free (power-law) features.

We implemented a version [58] of the preferential attach-
ment model that provides a scale-free network withN(d) ∝
d−3, whereN(d) is the number of nodes of degreed.

The copying model [60] improves upon the preferential at-
tachment model by exploiting only local structure to generate
a power-law degree distribution, and providing for random
graphs withN(d) ∝ d(2−p)/(1−p), wherep is a probability
[17].

Google matrix and PageRank.—PageRank can be seen as
the stationary distribution of a random walker on the web-
graph, which spends its time on each page in proportion to the
relative importance of that page [7].

To model this define the transition matrixP1 associated
with the adjacency matrixA of the graph

P1(i, j) =

{

1/d(i) if (i, j) is an edge ofA;
0 else,

(1)

whered(i) is the out-degree of theith node.
Since the out-degree of a node might be0, a walker that
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follows only links can become trapped in a node with no out-
links. Equivalently, ifP1 has a row of all0’s then it is not
stochastic. To overcome this problem one modifiesP1 by re-
placing every zero row with the vector~e/n whose entries are
all 1/n. Call this new stochastic matrixP2. However, there is
still the possibility of “importance sinks,” meaning subgraphs
with in-links but no out-links, i.e.,P2 needs to be made ir-
reducible [18]. To accomplish this one defines the Google
matrixG as

G := αPT
2 + (1− α)E, (2)

whereE ≡ |~v〉〈~e|.
The “personalization vector”~v is a probability distribution

with all positive entries; the typical choice is~v = ~e/n. The
parameterα is the probability that the walker follows the link
structure of the web-graph at each step, rather than hop ran-
domly between graph nodes according to~v. Google report-
edly usesα = 0.85, which we also use in this work. The
matrixE makesG irreducible and aperiodic, and hence the
Perron-Frobenius theorem ensures the existence of a unique
eigenvector with all positive entries associated to the maximal
eigenvalue1. This eigenvector is precisely the PageRank~p
[7]. Moreover, the modulus of the second eigenvalue ofG is
upper-bounded byα [19]. This is important for the conver-
gence of the power method, the standard computational tech-
nique employed to evaluate~p. It uses the fact that for any
probability vector~p0

~p = lim
k→∞

Gk~p0. (3)

The power method computes~p with accuracyν in a time
O[sn log(ν)/ log(α)], wheres is the sparsity of the graph
(maximum number of non-zero entries per row of the adja-
cency matrix). The rate of convergence is determined byα.
The other technique used in the evaluation of PageRank is
MCMC, where a direct simulation of rapidly mixing random
walks is used to estimate the PageRank at each node. The
typical running time isO[n log(n)] [20].

Adiabatic quantum computation.—Even though classical
PageRank computation time scales modestly with the prob-
lem sizen, in practice its evaluation for the actual WWW al-
ready takes weeks, a time which can only be expected to grow
if current computational methods remain the norm, given the
rapid pace of expansion of the web. Furthermore, it is of-
ten desirable to have multiple personalization vectors, which
means that more than one PageRank needs to be evaluated for
each WWW graph instance. Considering also the fact that the
web-graph is an evolving dynamic entity, it is clear that it is
important to speed up the computation of the PageRank in or-
der to provide up-to-date results from the ranking algorithm.

We now show how adiabatic quantum computation (AQC)
[5, 21–24] might be able to help in the optimization of the
resources needed to provide an up-to-date PageRank.

Small-scale experiments with the potential to pave the way
toward laboratory realization of AQC, involving8 supercon-
ducting flux qubits, have recently been reported [25]. In

AQC one encodes the solution to a difficult problem in the
ground state of a related problem HamiltonianH(p). The lat-
ter is arrived at by slowly modifying an initial Hamiltonian
H(i), for which the ground state is—by construction—easy
to obtain. The adiabatic evolution is generated byH(s) =
(1 − s)H(i) + sH(p). If the modification from the initial to
the final Hamiltonian is done slowly enough, and the param-
eters(t) : 0 7→ 1 has a smooth time dependence, where the
time t ∈ [0, T ], then the quantum adiabatic theorem guaran-
tees that the state of the system will be the ground state for all
t with high probability [26]. More precisely, in order for the
final system state|ψ(T )〉 = T e−i

∫
T

0
H[s(t)]dt|ψ(0)〉 to have

fidelity

f := |〈ψ(T )|π〉| & 1− ηa (4)

with respect to the the desired ground state|π〉 of H(p), the
total adiabatic evolution time should satisfy

T & a
Λb−1

ηδb
, (5)

whereΛ = maxs ‖dH/ds‖ (the norm is the largest eigen-
value) andδ = mins ∆(s), where∆(s) is the instantaneous
energy gap ofH(s) between the ground and first excited state.
The values of the integer exponentsa andb in Eqs. (4) and (5)
depend upon the differentiability and analyticity properties of
H(s), and the boundary conditions satisfied by its derivatives;
typically b ∈ {1, 2, 3} [27], while a can be tuned between
1 and arbitrarily large integer values, equal to the number of
vanishing derivates ofH(s) at the boundariess = 0 ands = 1
[28].

Adiabatic quantum PageRank algorithm.—SinceG is not
reversible we cannot directly apply the standard techniqueof
mapping it to a discriminant matrix withouta priori knowl-
edge of the stationary state [10, 29, 30]. Instead, let us con-
sider the following non-local problem Hamiltonian associated
with a generic Google matrixG (note that we useH andh for
local and non-local Hamiltonians, respectively):

h(p) = h(G) ≡ (I−G)
†
(I−G) . (6)

Sinceh(G) is positive semi-definite, and1 is the maximal
eigenvalue ofG associated with~p, it follows that the ground
state ofh(G) is given by|π〉 ≡ ~p/‖~p‖2. The initial Hamilto-
nian has a similar form, but it is associated with the Google
matrixGc of the complete graph [31]

h(i) = h(Gc) ≡ (I−Gc)
†
(I−Gc) . (7)

The ground state ofh(i) is |ψ(0)〉 =
∑n

j=1 |j〉/
√
n, a fully

delocalized, uniform quantum superposition state. The ba-
sis vectors|j〉 span then-dimensional Hilbert space oflogn
qubits. The interpolating adiabatic Hamiltonian is

h(s) = (1 − s)h(i) + sh(p). (8)

Equations (6)-(8) completely characterize the adiabatic quan-
tum PageRank algorithm, apart from the interpolation func-
tion s(t), which can be optimized using differential geometric
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FIG. 1. (color online) Top panel: The typical adiabatic error [ε]ave

scales approximately asT−0.48. Results are for a system of size
n = 16 (we checked different sizes obtaining similar results), aver-
aged over 100 random web-graph realizations. Bottom panel:[λ]ave

scales aslog log n, with a prefactor which is approximately 3. Re-
sults were averaged over1000 random web-graph realizations. See
text for more details.

or variational methods to simultaneously minimize the adia-
batic evolution timeT and the adiabatic errorε :=

√

1− f2

[32–34]. By simulating the dynamics generated byh(s) we
can estimate the parameters in Eq. (5) [35].

Simulation results.—Figures 1 and 2 summarize our numer-
ical simulations on the USC high-performance cluster [36].
Figure 1 shows the results for the preferential attachment
model, providing information on the adiabatic errorε and the
scaling ofλ ≡ ‖dh/ds‖ = ‖h(p) − h(i)‖ [corresponding to
the numerator in Eq. (5)], with respect to the number of web-
graph nodes. In these simulations we made no attempt to min-
imize the error by optimizings(t). From the upper panel we
can conclude that the adiabatic run-timeT scales as the in-
verse square of the adiabatic errorε. The bottom panel shows
the ensemble average ofλ. The fit clearly shows that for the
preferential attachment modelλ exhibits a double logarithmic
scaling as a function ofn. We checked numerically that simi-
lar results hold also for the copying model (not shown).

Figure 2 displays the scaling of the minimum gap with re-
spect to system size, also averaged over1000 random web-
graph realizations. The top panel displays the results for the
preferential attachment model. The bottom panel is for the
copying model, for which we considered different values of
the parameterp. In both models the random graphs were gen-
erated so that they have both in- and out-degree power-law
distributions. More specifically, we mixed (i.e., added thead-
jacency matrices of) graphsGA, with only in-degree power-
law distributions, with graphsGB with only out-degree power-
law distributions. For the simulations reported here, the maxi-
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FIG. 2. (color online) Scaling of the inverse of the average mini-
mum gap,1/[δ]ave , for the preferential attachment model (top panel),
and copying model (bottom panel). We checked numerically that the
same logarithmic scaling holds for the averaged inverse gap[1/δ]ave ,
with the latter slightly larger than1/[δ]ave for all graph sizesn [17].
Note that for the copying model the parameterp, relative to the in-
degree distribution, affects only the prefactor of the scaling.

mum out-degree forGB is approximately3 times greater than
the maximum in-degree forGA. Our simulation results, which
cover nearly four orders of magnitude of graph sizes, indicate
that, for the class of graphs we have considered, the inverseof
the average gap is proportional tolog(n).

Putting together the above observations, namely that
for a typical graph instanceλ ∼ poly(log log n), δ ∼
1/poly(logn), T ∼ ε−c (with c ≈ 2, see Figure 1), we can
conclude from Eq. (5) that the typical run-time of the adiabatic
quantum PageRank algorithm scales as

T ∼ ε−2(log logn)b−1(logn)b, (9)

whereb is some small positive integer that depends on the
details of the network topology (see Fig. 2). We checked
this result by simulating the adiabatic evolution of the system
allowing for a run-timeT = ǫ−2(log logn)b−1(logn)b, with
bothb = 2 andb = 3 for small graphs (up to 20 nodes), with a
fixed smallǫ. For each evolving random graph we found that
the final calculated adiabatic errorε is always upper bounded
by ǫ.

Mapping to a local Hamiltonian.—Since the Google ma-
trix G is not sparse, the physical implementation of thelogn-
qubits Hamiltonian in Eq. (8) can, in general, require many-
body interactions with arbitrarily high locality. This problem
is similar to one that arises, e.g., in the quantum adiabaticim-
plementation of Grover’s search algorithm [22]. A general
technique to overcome the non-locality problem is the use of
so-called perturbation gadgets, which requires the introduc-
tion of ancillary qubits [37]. However, a more direct alterna-
tive is to map the dynamics generated by Eq. (8) from then-
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dimensional Hilbert space into then-dimensional single parti-
cle excitation subspace of an effective2n-dimensional Hilbert
space withn qubits. This correspondence has been used re-
cently in a different context to study the quantum dynamics
of biomolecular systems [38], and it has also been considered
from an experimental perspective [39]. The new effective adi-
abatic Hamiltonian is given by

H(s) =
n
∑

i=1

h(s)iiσ
+
i σ

−
i +

n
∑

i<j

h(s)ij
(

σ+
i σ

−
j + σ+

j σ
−
i

)

,

(10)
whereh(s)ij is the(i, j)th matrix element ofh(s) as given in
Eq. (8), andσ±

i is the Pauli raising or lowering matrix for the
ith qubit (or web-graph node) [40]. The spectral properties of
H(s) in the single particle excitation subspace are the same as
those ofh(s) [17]. This implies that the estimate (9) also holds
forH(s), and hence one could envision programmingH(s) of
Eq. (10) onto physical systems such as excitonic quantum dots
or flux qubits, where two-qubit coupling has been shown to be
sign- and magnitude-tunable [41–43]. Provided this program-
ming step can be executed in time at mostO(log n), updating
the matrix elementsh(s)ij is efficient [44].

At the conclusion of the adiabatic evolution generated by
the Hamiltonian in Eq. (10), the PageRank vector~p = {pi} is
encoded into the quantum PageRank state|π〉 =

∑n
i=1

√
πi|i〉

of ann-qubit system, where|i〉 is the vector with1 in theith
entry, and0’s in all the others. The probability of finding the
only allowed excitation at sitei is πi = p2i /‖~p‖22. One can es-
timateπi by repeatedly sampling the expectation value of the
operatorσz

i in the final state. The number of measurements
M needed to estimateπi is given by the Chernoff-Hoeffding
bound [45], allowing us to approximateπi with an additive
errorei and withM = poly(e−1

i ). We now discuss tasks for
which the quantum ranking algorithm offers a speedup.

Ranking the top.—The fact that the amplitudes of the quan-
tum PageRank state are{√πi}, rather than{√pi}, is in
fact a virtue: we can show that∀i the total quantum cost is
O[n2γi−1polylog(n)] for estimating the rankπi with additive
errorei ∼ πi, while the corresponding classical cost is at best
O[nγi log(n)] [46]. Thus for this task there is a polynomial
quantum speedup wheneverγi < 1; our simulations show
that this is indeed the case for the top-rankedlog(n) pages.

Comparing successive PageRanks.—Another context for
useful applications is “q-sampling” [10]. Since the classical
PageRank algorithm is so costly when applied to the WWW,
one would like to develop criteria for when to run it, e.g., after
a relevant perturbation to the graph. The adiabatic quantum
algorithm can provide, in timeO[polylog(n)], the pre- and
post-perturbation states|π〉 and|π̃〉 as input to a quantum cir-
cuit implementing the SWAP-test [13]. To obtain an estimate
of the fidelity |〈π|π̃〉|2 we need to measure an ancillaO(1)
times, the number depending only on the desired precision.
Whenever some relevant perturbation of the previous quantum
PageRank state is observed, one can decide to run the classi-
cal algorithm again to update the classical PageRank. De-
ciding whether two probability distributions—one of which

is known—are close, classically requires approximately
√
n

samples [11, 47]. Related quantum algorithms for testing
properties of distributions [48] have recently been proposed
and analyzed [11].

Discussion.—Why do we observe a “large” gap that scales
asO(1/poly(logn))? The out-degree distribution seems to be
the key feature activating the polylogarithmic behavior [17].
In support of this claim we have also analyzed two other
classes of random graphs: one with only in-degree power-law
distribution, the other with only out-degree power-law distri-
bution. In the former we found that the average inverse gap
scales polynomially in the system size (“small” gap), while
in latter we found the “large” gap, polylogarithmic scaling.
On the other hand when the out-degrees are equal to the in-
degrees (as for undirected graphs) the gap scaling is again
polynomial. The scaling for intermediate cases is determined
by the presence or absence of sufficiently many nodes linking
to a relevant portion of the graph: the simulations we have re-
ported here show that graphs with approximately three times
more out-going than in-coming links in the most connected
nodes exhibit the polylogarithmic scaling. Establishing the
exact connection between the in- and out-degree distributions
and gap scaling is an interesting open problem for future re-
search.

It would also be interesting to formulate a quantum circuit
version of our PageRank algorithm. Perhaps the results ob-
tained in [49] concerning the efficient solution of linear sys-
tems of equations could be used for this purpose.
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Supplemental material

Preferential attachment model and copying model

The idea behind the preferential attachment model algo-
rithm is that new vertices are more likely to attach to exist-
ing vertices with high degree. In our simulations we imple-
mented the algorithm proposed in [58], where some ambigu-
ities of the original preferential attachment model [59] were
resolved. This algorithm provides a scale-free network having
a power-law degree distribution with a fixed exponent equal to
3: N(d) ∝ d−3, whereN(d) is the number of nodes of de-
greed. A drawback of the preferential attachment model is
that global knowledge of the degree of all nodes is required.
Moreover, the exponent of the power-law degree distribution
is not controllable. The copying model introduced in [60]
overcomes these drawbacks. It exploits only local structure
to generate a power-law degree distribution. To do so one
starts from a small fixed initial graph of constant out-degree,
and at each time step a pre-existing vertex is chosen uniformly
at random. This node is called the copying vertex. For each
neighbor of the copying vertex, a link is added from a new
added vertex to that neighbor with probability1 − p, while
with probabilityp a link is added from the new added vertex
to a uniformly random chosen one. The parameterp allows
to obtain random graphs with power-law degree distributions
with exponents given by(2− p)/(1− p).

Equivalence of non-local and local single-excitation
Hamiltonians

Here we show that the spectrum of theN -level Hamiltonian
(acting on anN -dimensional Hilbert space)

h =

N
∑

i=1

hii|i〉〈i|+
∑

i<j

hij(|i〉〈j|+ |j〉〈i|), (11)

is the same as the spectrum of the following spin Hamiltonian
(acting on the Hilbert space ofN qubits), when restricted to
the single excitation manifold,

H =

N
∑

i=1

hiiσ
+
i σ

−
i +

N
∑

i<j

hij(σ
+
i σ

−
j + σ+

j σ
−
i ) (12)

whereσ±
k are Pauli ladder operators acting on thekth qubit.

Since the Hilbert space of theN -qubit Hamiltonian is re-
stricted to the single excitation manifold it is spanned byN
basis vectors which can be put into one-to-one correspon-
dence with the basis vector of the Hilbert space of theN -level
Hamiltonian

|i〉 ↔ | ↑〉i ≡ | ↓1 · · · ↓i−1 ↑i ↓i+1 · · · ↓N 〉. (13)

Choosing the following representation for the Pauli matrices
acting on qubitj,

σx
j = | ↑〉〈↓ |j + | ↓〉〈↑ |j

σy
j = i (| ↓〉〈↑ |j − | ↑〉〈↓ |j)
σz
j = | ↑〉〈↑ |j − | ↓〉〈↓ |j

σ+
j =

σx
j + iσy

j

2
= | ↑〉〈↓ |i

σ−
j =

σx
j − iσy

j

2
= | ↓〉〈↑ |i, (14)

one can derive Eq. (12) from Eq. (11) using Eq. (13). The
spectrum does not change in this construction since we are
simply relabeling the bases of two isomorphic Hilbert spaces.

Another way of seeing this is to note that when the Hamil-
tonian in Eq. (12) is not restricted to the single excitationman-
ifold and one has to diagonalize it, if the excitation numbers
are conserved quantities, then one can first reduce the Hamil-
tonian into blocks labeled by the number of excitations and
subsequently diagonalize each single block. The block la-
beled by a single excitation is equivalent to Eq. (11) via the
mapping in Eq. (13).

Role of the out-degrees

The WWW graph is characterized by a power-law distribu-
tion for both for the in- and out-degrees of the nodes. Here
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FIG. 3. (color online) Top panel: The average inverse minimum gap
scaling for random graphs with only in-degree power-law distribu-
tion. Bottom panel: The average inverse minimum gap scalingfor
random graphs with only out-degree power-law distribution. 1000
realizations.
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FIG. 4. (color online) The inverse of the average minimum gap
scaling for undirected preferential attachment random graphs. Top
panel: log-log plot. Bottom panel: semi-log plot. Linear fits are poor
in both cases. Averaged over 1000 realizations.

we provide numerical evidence supporting the fundamental
role played by the out-degrees in activating the polylogarith-
mic scaling of the average inverse gap, as a function of system
sizen (the number of vertices in the graph).

In order to distinguish the effect of the in-degrees from
that of the out-degrees we consider preferential attachment
graphs constructed in such a way that only one power-law
is present. Starting with preferential attachment networks

with only in-degree power-law distribution, Fig. 3 (top panel)
shows the typical behavior of the inverse minimum gap. In
this case the scaling is sub-linear, though not logarithmic:
[δ−1]ave ∼ n0.65. Also shown in Fig. 3 (bottom panel) is the
scaling for the reverse graphs, obtained by reversing the di-
rection of each edge. This corresponds to networks in which
only the out-degrees are power-law distributed. Remarkably,
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FIG. 5. (color online) The average inverse minimum gap scaling for
undirected preferential attachment random graphs. Top panel: log-
log plot. Bottom panel: semi-log plot. Linear fits are poor inboth
cases. Averaged over 1000 realizations.

in this case we find the fit[δ−1]ave ∼ (log10 n)
2.7. In Fig. 4

we plot the same data considering the inverse of the average
minimum gap, instead of the average of the inverse minimum
gap. As expected qualitatively the scaling is the same, with
small quantitative discrepancies.

Fig. 5 shows what happens when we consider preferential
attachment graphs with identical in- and out-degrees. In this
case the graph is equivalent to an undirected graph, and we
find non-logarithmic, sub-linear scaling. We display both the
double-logarithmic and the semi-logarithmic plots in order to
make the distinction clear.

We note that the quantum adiabatic algorithm can still be
useful even in the case of networks with only in-degree power-
law distribution, for the preparation not of the pagerank state,
but of the so-calledinverse pagerank[61] (used for spam de-
tection). The latter is the pagerank of the reverse graph. The
results of the simulations in Figs. 3-5 suggest that, typically,
when the algorithm is unable to prepare the pagerank in poly-
logarithmic time, it can still prepare the inverse pagerankin
polylogarithmic time.


