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Adiabatic quantum algorithm for search engine ranking
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We propose an adiabatic quantum algorithm for generatingaatgm pure state encoding of the PageRank
vector, the most widely used tool in ranking the relative amance of internet pages. We present extensive
numerical simulations which provide evidence that thiodtgm can prepare the quantum PageRank state
in a time which, on average, scales polylogarithmicallyha humber of webpages. We argue that the main
topological feature of the underlying web graph allowinggach a scaling is the out-degree distribution. The
top rankedlog(n) entries of the quantum PageRank state can then be estiméted polynomial quantum
speedup. Moreover, the quantum PageRank state can be usesbimpling” protocols for testing properties of
distributions, which require exponentially fewer measugats than all classical schemes designed for the same
task. This can be used to decide whether to run a classicateipdithe PageRank.

Introduction—Quantum mechanics provides computa-structure of the web-graph via its adjacency matrix. The hu-
tional resources that can be used to outperfom classicad algmongous size of the World Wide Web (WWW), with its ever
rithms [1]. Problems for which a polynomial or exponential growing number of pages and links, makes the evaluation of
guantum speed-up is achievable have been sought in quantuhe PageRank vector one of the most demanding computa-
computation since its inception, and their ranks are saglli tional tasks evel [9]. In practice PageRank is evaluated ove
slowly [2]. Yet, while ranking the results obtained in reepe  real data providing the structure of the actual WWW. On the
to a user query is one of the most difficult tasks in searchingther hand the use of models of the web-graph has proved to
the web|[3], so far no efficient quantum algorithms have beeie useful in testing new ideas concerning structure messure
proposed for this task/[4]. and dynamical properties of the web [8]. To accurately cap-

Here we present an adiabatic quantum algoritim [5] whicture the WWW graph a good candidate model network should
prepares a state containing the same ranking information & (i) sparse (the number of edges is proportional to the num-
the PageRank vector. The latter is a central tool in data minPer of nodes), (i) small-world (the network diameter ssale
ing and information retrieval, at the heart of the success ofogarithmically in the size of the network), and (iii) scdftee
the Google search engiré [3]6-9]. The best available elass{the in- and out-degree probability distributions obey weo
cal algebraic and Markov Chain Monte Carlo (MCMC) tech- law). To analyze the scaling properties of our algorithm we
niques used to evaluate the full PageRank vector requinesa ti used two well known models of the web-graph: the prefer-
which scales a®)(n) and O(nlogn), respectively, where e€ntial attachment model [59], and the copying model [60].
n is the number of pages, i.e., the size of the Web-graphThese models are based on two different network evolution
We investigate the size of the gap of the adiabatic Hamil-mechanisms, both of which yield sparse random graphs with
tonian numerically using a wide range of web-graph size$mall-world and scale-free (power-law) features.

(n € {22,...,2"}), and present evidence that our quantum We implemented a version [58] of the preferential attach-
algorithm prepares the PageRank state in a time which scal@@ent model that provides a scale-free network witfyl) oc

on average a®|polylog(n)]. We argue that while extraction d °, whereN (d) is the number of nodes of degrée

of the full PageRank vector cannot in general be done more The copying model [60] improves upon the preferential at-
efficiently than when using the aforementioned classig-al tachment model by exploiting only local structure to geteera
rithms, there are particular graph-topologies and speaisics & power-law degree distribution, and providing for random
of relevance in the use of search engines for which the quargraphs withN (d) o d2=#)/(1=7), wherep is a probability
tum algorithm, combined with other known quantum proto-[17]-

cols [10:-1B], may provide a polynomial, or even exponential Google matrix and PageRankPageRank can be seen as
speedup. We discuss the underlying graph structure which wi&e stationary distribution of a random walker on the web-
believe is responsible for this potential speedup, andigeov 9raph, which spends its time on each page in proportion to the
evidence that it is the power law distribution of the out«eg ~ relative importance of that page [7].

nodes that plays the key role. A proof of this fact would be To model this define the transition matr# associated
very interesting. with the adjacency matrid of the graph

Model of the web-graph.Fhe PageRank algorithm, in- . 1/d(i) if (i, j) is an edge of4;
troduced by Brin & Page [6], is probably the most promi- Pi(i,j) = { 0 elsé ’ (1)
nent ranking measure using the query-independent hygerlin
structure of the web. The PageRank vector is the principalvhered(i) is the out-degree of thgh node.
eigenvector of the so-called Google matrix, which encodest  Since the out-degree of a node might®ea walker that
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follows only links can become trapped in a node with no out-AQC one encodes the solution to a difficult problem in the
links. Equivalently, if P, has a row of all0’s then it is not  ground state of a related problem Hamiltonid¥). The lat-
stochastic. To overcome this problem one modiftedby re-  ter is arrived at by slowly modifying an initial Hamiltonian
placing every zero row with the vectéyn whose entries are  H(®), for which the ground state is—by construction—easy
all 1/n. Call this new stochastic matri®,. However, thereis to obtain. The adiabatic evolution is generatedfys) =

still the possibility of “importance sinks,” meaning suaghs (1 — s)H® + sH(®)_ If the modification from the initial to
with in-links but no out-links, i.e.,P, needs to be made ir- the final Hamiltonian is done slowly enough, and the param-
reducible [18]. To accomplish this one defines the Googleeters(t) : 0 — 1 has a smooth time dependence, where the

matrix G as timet¢ € [0, 7], then the quantum adiabatic theorem guaran-
- tees that the state of the system will be the ground statdlfor a
G:=ab, +(1-a)E, (2 twith high probability [26]. More precisely, in order for the
whereE = |)(e]. final system statgy(7)) = Te~iJo Hlisldt|yy(0)) to have
The “personalization vector? is a probability distribution ~ fidelity
with all positive entries; the typical choice &= é/n. The fo=W(T)|m)] =1 —n" (4)

parametery is the probability that the walker follows the link

structure of the web-graph at each step, rather than hop ramith respect to the the desired ground stateof H(®), the
domly between graph nodes accordingitoGoogle report-  total adiabatic evolution time should satisfy

edly usesae = 0.85, which we also use in this work. The Ab-1

matrix £ makesG irreducible and aperiodic, and hence the T2 a—, (5)
Perron-Frobenius theorem ensures the existence of a unique no

eigenvector with all positive entries associated to theimak ~ where A = max; |dH/ds| (the norm is the largest eigen-
eigenvaluel. This eigenvector is precisely the PageRahk value) andd = min, A(s), whereA(s) is the instantaneous
[7]. Moreover, the modulus of the second eigenvaluéaé  energy gap ofi (s) between the ground and first excited state.
upper-bounded by [1€]. This is important for the conver- The values of the integer exponentandb in Egs. [4) and(5)
gence of the power method, the standard computational tecldepend upon the differentiability and analyticity propestof
nique employed to evaluafe It uses the fact that for any H(s), and the boundary conditions satisfied by its derivatives;

probability vectorpy typically b € {1,2,3} [27], while a can be tuned between
L "o 1 and arbitrarily large integer values, equal to the number of
p= lim G"po. (3)  vanishing derivates off (s) at the boundaries = 0 ands = 1
) ) ) [28].
The power method computgswith accuracyv in a time Adiabatic quantum PageRank algorithm SinceG is not

O[snlog(v)/log()], wheres is the sparsity of the graph reyersible we cannot directly apply the standard technigue
(maximum number of non-zero entries per row of the adjamapping it to a discriminant matrix without priori knowl-
cency matrix). The rate of convergence is determinedby gqqge of the stationary stafe [10] 29| 30]. Instead, let us con
The other technique used in the evaluation of PageRank igiger the following non-local problem Hamiltonian assteih

MCMC, where a direct simulation of rapidly mixing random ith a generic Google matri& (note that we usél andh for
walks is used to estimate the PageRank at each node. Th§:51 and non-local Hamiltonians respectively):

typical running time igD[n log(n)] [20].

Adiabatic quantum computationEven though classical R = (@) =1-G)'(1-G). (6)
PageRank computation time scales modestly with the prob-. . . e . .
lem sizen, in practice its evaluation for the actual WWW al- S_mceh(G) IS posmve_ seml-erln|te, andl is the maximal
ready takes weeks, a time which can only be expected to gro\(ﬁgenvalue O_C a_ssomated Wltlz)’ it follows that the grqund
if current computational methods remain the norm, given thggate ofh(G) IS given by) = p./”ﬂb' T_he |n|t|ql Hamilto-
rapid pace of expansion of the web. Furthermore, it is Of_nlan_has a similar form, but it is gssomated with the Google
ten desirable to have multiple personalization vectorsciwh matrix G of the complete graph [81]
means that more than one PageRank needs to be evaluated for R =h(G)=1-G) (1-G,). (7)
each WWW graph instance. Considering also the fact that the _
web-graph is an evolving dynamic entity, it is clear thasit i The ground state ok is |4(0)) = Y"_, [j)/v/n, a fully
important to speed up the computation of the PageRank in oflelocalized, uniform quantum superposition state. The ba-
der to provide up-to-date results from the ranking alganith ~ Sis vectorsj) span then-dimensional Hilbert space dbg n

We now show how adiabatic quantum computation (AQC)dubits. The interpolating adiabatic Hamiltonian is
[5, [21+24] might be able to help in the optimization of the _ i P
resources needed to provide an up-to-date PageRank. fls) = (1 - S)h( )+ sh®. ®

Small-scale experiments with the potential to pave the wayequations[(B)E(8) completely characterize the adiabatang
toward laboratory realization of AQC, involvirgsupercon- tum PageRank algorithm, apart from the interpolation func-
ducting flux qubits, have recently been reported [25]. Intion s(t), which can be optimized using differential geometric
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FIG. 2. (color online) Scaling of the inverse of the averagaim
mum gap,1/[0]ave, fOr the preferential attachment model (top panel),
and copying model (bottom panel). We checked numericadlyttie
same logarithmic scaling holds for the averaged inverséigapave,
with the latter slightly larger thai/[d].v. for all graph sizes: [17].
Note that for the copying model the parameterelative to the in-
degree distribution, affects only the prefactor of theiscal

FIG. 1. (color online) Top panel: The typical adiabatic erfdave
scales approximately &8-°%%. Results are for a system of size
n = 16 (we checked different sizes obtaining similar resultsgrav
aged over 100 random web-graph realizations. Bottom pahRle
scales asog log n, with a prefactor which is approximately 3. Re-
sults were averaged ovéf00 random web-graph realizations. See
text for more details.

mum out-degree fo§ g is approximately3 times greater than
the maximum in-degree f@f 4. Our simulation results, which
cover nearly four orders of magnitude of graph sizes, irtdica
that, for the class of graphs we have considered, the ineérse
the average gap is proportionalltg(n).
Putting together the above observations, namely that
r a typical graph instanceé ~ poly(loglogn), § ~
1/poly(logn), T ~ ¢ (with ¢ ~ 2, see Figurg&ll), we can
"Lonclude from EqL{5) that the typical run-time of the adiaba
guantum PageRank algorithm scales as

or variational methods to simultaneously minimize the adia
batic evolution timel” and the adiabatic errar:= /1 — f2
[32-+34]. By simulating the dynamics generated/tfy) we
can estimate the parameters in Eg. (5) [35].

Simulation results—Figure$ 1 andl2 summarize our numer- ¢,
ical simulations on the USC high-performance cluster [36].
Figure[1 shows the results for the preferential attachme
model, providing information on the adiabatic erecaind the
scaling of\ = ||dh/ds|| = ||h®) — ()| [corresponding to
the numerator in EqL{5)], with respect to the number of web-
graph nodes. In these simulations we made no attempt to min-
imize the error by optimizing(t). From the upper panel we whereb is some small positive integer that depends on the
can conclude that the adiabatic run-tifiescales as the in- details of the network topology (see Fi§l 2). We checked
verse square of the adiabatic errofThe bottom panel shows  this result by simulating the adiabatic evolution of thetegs
the ensemble average &f The fit clearly shows that for the allowing for a run-timel’ = e 2(loglogn)®~*(logn)?, with
preferential attachment modgkexhibits a double logarithmic  boths = 2 andb = 3 for small graphs (up to 20 nodes), with a
scaling as a function of. We checked numerically that simi- fixed smalle. For each evolving random graph we found that
lar results hold also for the copying model (not shown). the final calculated adiabatic errois always upper bounded

Figure[2 displays the scaling of the minimum gap with re-by e.
spect to system size, also averaged av#0 random web- Mapping to a local Hamiltoniar—Since the Google ma-
graph realizations. The top panel displays the resultshfer t trix G is not sparse, the physical implementation oflikyen-
preferential attachment model. The bottom panel is for thegubits Hamiltonian in Eq[{8) can, in general, require many-
copying model, for which we considered different values ofbody interactions with arbitrarily high locality. This gotem
the parametep. In both models the random graphs were gen-is similar to one that arises, e.g., in the quantum adialratic
erated so that they have both in- and out-degree power-laplementation of Grover's search algorithml[22]. A general
distributions. More specifically, we mixed (i.e., addeddge  technique to overcome the non-locality problem is the use of
jacency matrices of) graphg,, with only in-degree power- so-called perturbation gadgets, which requires the intred
law distributions, with graph§g with only out-degree power- tion of ancillary qubits|[37]. However, a more direct altarn
law distributions. For the simulations reported here, tlaim  tive is to map the dynamics generated by Eg. (8) fromuthe

T ~ e 2(loglogn)®~1(logn)®, 9)



dimensional Hilbert space into thedimensional single parti-
cle excitation subspace of an effect®&dimensional Hilbert

4

is known—are close, classically requires approximaigly
samples|[11}, 47]. Related quantum algorithms for testing

space withn qubits. This correspondence has been used regroperties of distributions [48] have recently been pregbs
cently in a different context to study the quantum dynamicsand analyzed [11].

from an experimental perspective[39]. The new effectivie ad
abatic Hamiltonian is given by

H(s) = Z h(s)iiaja; + Z h(s)sj (ajajf + ajai*) ,
i=1 i<j
(10)
whereh(s);; is the(i, j)th matrix element oh(s) as given in

Eq. (8), andy;t is the Pauli raising or lowering matrix for the

asO(1/poly(logn))? The out-degree distribution seems to be
the key feature activating the polylogarithmic behavior][1

In support of this claim we have also analyzed two other
classes of random graphs: one with only in-degree power-law
distribution, the other with only out-degree power-lawtdis
bution. In the former we found that the average inverse gap
scales polynomially in the system size (“small” gap), while
in latter we found the “large” gap, polylogarithmic scaling

ith qubit (or web-graph node) [40]. The spectral propertfes 0On the other hand when the out-degrees are equal to the in-
H (s) in the single particle excitation subspace are the same ategrees (as for undirected graphs) the gap scaling is again
those of(s) [17]. This implies that the estimafé (9) also holds polynomial. The scaling for intermediate cases is detegahin

for H(s), and hence one could envision programmifi@) of

by the presence or absence of sufficiently many nodes linking

Eqg. (I0) onto physical systems such as excitonic quantusn doto a relevant portion of the graph: the simulations we have re
or flux qubits, where two-qubit coupling has been shown to beported here show that graphs with approximately three times

sign- and magnitude-tunable [41+-43]. Provided this progra
ming step can be executed in time at mOs$tog n), updating
the matrix elements(s);; is efficient [44].

more out-going than in-coming links in the most connected
nodes exhibit the polylogarithmic scaling. Establishihg t
exact connection between the in- and out-degree distoibsiti

At the conclusion of the adiabatic evolution generated byand gap scaling is an interesting open problem for future re-

the Hamiltonian in Eq[{10), the PageRank vegtet {p;} is
encoded into the quantum PageRank state= > ., /i)

of ann-qubit system, wherg) is the vector withl in theith
entry, and0’s in all the others. The probability of finding the
only allowed excitation at siteis m; = p?/||p]|3. One can es-

timaten; by repeatedly sampling the expectation value of the
operators? in the final state. The number of measurementsto
M needed to estimate; is given by the Chernoff-Hoeffding Sc

bound [45], allowing us to approximate with an additive
errore; and with M = poly(e; ). We now discuss tasks for
which the quantum ranking algorithm offers a speedup.
Ranking the top—The fact that the amplitudes of the quan-
tum PageRank state adg/m;}, rather than{,/p;}, is in
fact a virtue: we can show that the total quantum cost is
O[n?Yi~1polylog(n)] for estimating the rank; with additive

search.

It would also be interesting to formulate a quantum circuit
version of our PageRank algorithm. Perhaps the results ob-
tained in [49] concerning the efficient solution of lineassy
tems of equations could be used for this purpose.
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errore; ~ m;, while the corresponding classical cost is at best

O[n" log(n)] [4€]. Thus for this task there is a polynomial
guantum speedup whenever < 1; our simulations show
that this is indeed the case for the top-rankeqn) pages.
Comparing successive PageRark#&nother context for
useful applications is “g-sampling” [10]. Since the classi

PageRank algorithm is so costly when applied to the WWW,

one would like to develop criteria for when to run it, e.gteaf

a relevant perturbation to the graph. The adiabatic quantum

algorithm can provide, in tim&/[polylog(n)], the pre- and
post-perturbation statés) and|7) as input to a quantum cir-

cuit implementing the SWAP-test [13]. To obtain an estimate

of the fidelity | (x|7)|?> we need to measure an ancill¥1)

times, the number depending only on the desired precision
Whenever some relevant perturbation of the previous quantu
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Suppl tal material . .
ppiemental mater! acting on qubitj,

Preferential attachment model and copying model U}E =[N HTD
of =i (| (=1 )
The idea behind the preferential attachment model algo- o= -1l
rithm is that new vertices are more likely to attach to exist- o 4 igY
ing vertices with high degree. In our simulations we imple- of = % =[N i
mented the algorithm proposed in [58], where some ambigu- ot _ igV
ities of the original preferential attachment model [59]reve o7 =2—L =111 (14)

resolved. This algorithm provides a scale-free networkrtav ’ 2

a power-law degree distribution with a fixed exponentequal t one can derive EqL(12) from Ed._(11) using Hg.l(13). The
3: N(d) « d~3, whereN(d) is the number of nodes of de- spectrum does not change in this construction since we are
greed. A drawback of the preferential attachment model issimply relabeling the bases of two isomorphic Hilbert sgace
that global knowledge of the degree of all nodes is required. Another way of seeing this is to note that when the Hamil-
Moreover, the exponent of the power-law degree distriloutio tonian in Eq.[(IR) is not restricted to the single excitatioamn-

is not controllable. The copying model introduced linl [60] ifold and one has to diagonalize it, if the excitation nunsber
overcomes these drawbacks. It exploits only local strectur are conserved quantities, then one can first reduce the Hamil
to generate a power-law degree distribution. To do so ononian into blocks labeled by the number of excitations and
starts from a small fixed initial graph of constant out-degre subsequently diagonalize each single block. The block la-
and at each time step a pre-existing vertex is chosen unljorm beled by a single excitation is equivalent to Hq.](11) via the
at random. This node is called the copying vertex. For eaclmapping in Eq.[(113).

neighbor of the copying vertex, a link is added from a new

added vertex to that neighbor with probability— p, while

with probabilityp a link is added from the new added vertex Role of the out-degrees

to a uniformly random chosen one. The parametaflows

to obtain random graphs with power-law degree distribition The WWW graph is characterized by a power-law distribu-
with exponents given by2 — p)/(1 — p). tion for both for the in- and out-degrees of the nodes. Here
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oL y=26%-041 e in this case we find the fi5~"Jave ~ (logy7)*". In Fig.[4
e PSS we plot the same data considering the inverse of the average
& 5- .« s B . ..
B M minimum gap, instead of the average of the inverse minimum
o gap. As expected qualitatively the scaling is the same, with
-5 o5 : s ‘ 25 : 35 2 small quantitative discrepancies.

Fig.[T shows what happens when we consider preferential
attachment graphs with identical in- and out-degrees. iB1 th
FIG. 4. (color online) The inverse of the average minimum gapcase the graph is equivalent to an undirected graph, and we
scaling for undirected preferential attachment randonpigga Top  fing non-logarithmic, sub-linear scaling. We display bdta t

panel: log-log plot. Bottom panel: semi-log plot. Lineas#re poor , p|e_|ogarithmic and the semi-logarithmic plots in artte
in both cases. Averaged over 1000 realizations. e
make the distinction clear.

We note that the quantum adiabatic algorithm can still be
we provide numerical evidence supporting the fundamentaliseful even in the case of networks with only in-degree pewer
role played by the out-degrees in activating the polyldbari law distribution, for the preparation not of the pageraritest
mic scaling of the average inverse gap, as a function of syste but of the so-calledhverse pageranf61] (used for spam de-
sizen (the number of vertices in the graph). tection). The latter is the pagerank of the reverse graple. Th

In order to distinguish the effect of the in-degrees fromresults of the simulations in Figsl[3-5 suggest that, tyyica
that of the out-degrees we consider preferential attachmenvhen the algorithm is unable to prepare the pagerank in poly-
graphs constructed in such a way that only one power-laogarithmic time, it can still prepare the inverse pagerank
is present. Starting with preferential attachment network polylogarithmic time.



